p-group, metabelian, nilpotent (class 3), monomial
Aliases: C24.167C23, (C23×C4)⋊8C4, (C2×C42)⋊7C4, C4⋊2(C23⋊C4), C23⋊2(C4⋊C4), (C2×D4).20Q8, (C2×D4).196D4, C23.1(C2×Q8), C24.29(C2×C4), C23.3(C4○D4), C23.547(C2×D4), (C22×C4).265D4, C23.9D4⋊1C2, C23.7Q8⋊5C2, C22.37(C4⋊D4), C23.185(C22×C4), (C23×C4).236C22, C22.47(C22⋊Q8), C2.8(C23.7Q8), (C22×D4).454C22, C22.25(C42⋊C2), C2.25(C23.C23), (C2×C4⋊C4)⋊26C4, (C2×C4)⋊2(C4⋊C4), (C2×C4×D4).13C2, (C2×C22⋊C4)⋊18C4, (C2×C23⋊C4).3C2, C22.17(C2×C4⋊C4), C2.25(C2×C23⋊C4), (C22×C4).49(C2×C4), (C2×C22⋊C4).5C22, (C2×C4).355(C22⋊C4), C22.244(C2×C22⋊C4), SmallGroup(128,531)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C24.167C23
G = < a,b,c,d,e,f,g | a2=b2=c2=d2=g2=1, e2=c, f2=a, ab=ba, ac=ca, ad=da, fef-1=ae=ea, af=fa, ag=ga, bc=cb, ebe-1=bd=db, bf=fb, bg=gb, gcg=cd=dc, ce=ec, cf=fc, de=ed, df=fd, dg=gd, geg=bde, fg=gf >
Subgroups: 436 in 190 conjugacy classes, 62 normal (28 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C2×C4, C2×C4, C2×C4, D4, C23, C23, C23, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C2×D4, C2×D4, C24, C2.C42, C23⋊C4, C2×C42, C2×C22⋊C4, C2×C22⋊C4, C2×C4⋊C4, C2×C4⋊C4, C4×D4, C23×C4, C22×D4, C23.9D4, C23.7Q8, C2×C23⋊C4, C2×C4×D4, C24.167C23
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, C23, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C2×Q8, C4○D4, C23⋊C4, C2×C22⋊C4, C2×C4⋊C4, C42⋊C2, C4⋊D4, C22⋊Q8, C23.7Q8, C2×C23⋊C4, C23.C23, C24.167C23
(1 22)(2 23)(3 24)(4 21)(5 14)(6 15)(7 16)(8 13)(9 32)(10 29)(11 30)(12 31)(17 28)(18 25)(19 26)(20 27)
(1 3)(2 5)(4 7)(6 8)(9 27)(10 12)(11 25)(13 15)(14 23)(16 21)(17 19)(18 30)(20 32)(22 24)(26 28)(29 31)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)
(1 6)(2 7)(3 8)(4 5)(9 25)(10 26)(11 27)(12 28)(13 24)(14 21)(15 22)(16 23)(17 31)(18 32)(19 29)(20 30)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 29 22 10)(2 11 23 30)(3 31 24 12)(4 9 21 32)(5 25 14 18)(6 19 15 26)(7 27 16 20)(8 17 13 28)
(1 2)(3 5)(4 8)(6 7)(9 17)(10 30)(11 29)(12 18)(13 21)(14 24)(15 16)(19 27)(20 26)(22 23)(25 31)(28 32)
G:=sub<Sym(32)| (1,22)(2,23)(3,24)(4,21)(5,14)(6,15)(7,16)(8,13)(9,32)(10,29)(11,30)(12,31)(17,28)(18,25)(19,26)(20,27), (1,3)(2,5)(4,7)(6,8)(9,27)(10,12)(11,25)(13,15)(14,23)(16,21)(17,19)(18,30)(20,32)(22,24)(26,28)(29,31), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,6)(2,7)(3,8)(4,5)(9,25)(10,26)(11,27)(12,28)(13,24)(14,21)(15,22)(16,23)(17,31)(18,32)(19,29)(20,30), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,29,22,10)(2,11,23,30)(3,31,24,12)(4,9,21,32)(5,25,14,18)(6,19,15,26)(7,27,16,20)(8,17,13,28), (1,2)(3,5)(4,8)(6,7)(9,17)(10,30)(11,29)(12,18)(13,21)(14,24)(15,16)(19,27)(20,26)(22,23)(25,31)(28,32)>;
G:=Group( (1,22)(2,23)(3,24)(4,21)(5,14)(6,15)(7,16)(8,13)(9,32)(10,29)(11,30)(12,31)(17,28)(18,25)(19,26)(20,27), (1,3)(2,5)(4,7)(6,8)(9,27)(10,12)(11,25)(13,15)(14,23)(16,21)(17,19)(18,30)(20,32)(22,24)(26,28)(29,31), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,6)(2,7)(3,8)(4,5)(9,25)(10,26)(11,27)(12,28)(13,24)(14,21)(15,22)(16,23)(17,31)(18,32)(19,29)(20,30), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,29,22,10)(2,11,23,30)(3,31,24,12)(4,9,21,32)(5,25,14,18)(6,19,15,26)(7,27,16,20)(8,17,13,28), (1,2)(3,5)(4,8)(6,7)(9,17)(10,30)(11,29)(12,18)(13,21)(14,24)(15,16)(19,27)(20,26)(22,23)(25,31)(28,32) );
G=PermutationGroup([[(1,22),(2,23),(3,24),(4,21),(5,14),(6,15),(7,16),(8,13),(9,32),(10,29),(11,30),(12,31),(17,28),(18,25),(19,26),(20,27)], [(1,3),(2,5),(4,7),(6,8),(9,27),(10,12),(11,25),(13,15),(14,23),(16,21),(17,19),(18,30),(20,32),(22,24),(26,28),(29,31)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32)], [(1,6),(2,7),(3,8),(4,5),(9,25),(10,26),(11,27),(12,28),(13,24),(14,21),(15,22),(16,23),(17,31),(18,32),(19,29),(20,30)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,29,22,10),(2,11,23,30),(3,31,24,12),(4,9,21,32),(5,25,14,18),(6,19,15,26),(7,27,16,20),(8,17,13,28)], [(1,2),(3,5),(4,8),(6,7),(9,17),(10,30),(11,29),(12,18),(13,21),(14,24),(15,16),(19,27),(20,26),(22,23),(25,31),(28,32)]])
32 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | ··· | 2I | 2J | 2K | 4A | 4B | 4C | 4D | 4E | ··· | 4L | 4M | ··· | 4T |
order | 1 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 4 | ··· | 4 |
size | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 4 | 4 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 8 | ··· | 8 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | - | + | ||||||
image | C1 | C2 | C2 | C2 | C2 | C4 | C4 | C4 | C4 | D4 | D4 | Q8 | C4○D4 | C23⋊C4 | C23.C23 |
kernel | C24.167C23 | C23.9D4 | C23.7Q8 | C2×C23⋊C4 | C2×C4×D4 | C2×C42 | C2×C22⋊C4 | C2×C4⋊C4 | C23×C4 | C22×C4 | C2×D4 | C2×D4 | C23 | C4 | C2 |
# reps | 1 | 2 | 2 | 2 | 1 | 2 | 2 | 2 | 2 | 4 | 2 | 2 | 4 | 2 | 2 |
Matrix representation of C24.167C23 ►in GL6(𝔽5)
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
0 | 0 | 0 | 0 | 4 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
2 | 0 | 0 | 0 | 0 | 0 |
4 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
4 | 1 | 0 | 0 | 0 | 0 |
3 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
G:=sub<GL(6,GF(5))| [4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,4,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[2,4,0,0,0,0,0,3,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,1,0,0,0,0,4,0,0,0],[4,3,0,0,0,0,1,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,1,0,0] >;
C24.167C23 in GAP, Magma, Sage, TeX
C_2^4._{167}C_2^3
% in TeX
G:=Group("C2^4.167C2^3");
// GroupNames label
G:=SmallGroup(128,531);
// by ID
G=gap.SmallGroup(128,531);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,2,-2,224,141,64,422,2804,1027]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=g^2=1,e^2=c,f^2=a,a*b=b*a,a*c=c*a,a*d=d*a,f*e*f^-1=a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,e*b*e^-1=b*d=d*b,b*f=f*b,b*g=g*b,g*c*g=c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,d*g=g*d,g*e*g=b*d*e,f*g=g*f>;
// generators/relations